

Bending the Future: Autoregressive Modeling of Temporal KNOWLEDGE GRAPHS IN CURVATURE-VARIABLE HYPERBOLIC SPACES Jihoon Sohn¹, Mingyu Derek Ma², Muhao Chen¹

Highlights of our method (HyperVC)

- 1. HyperVC: a novel hyperbolic reasoning method for event forecasting in Temporal Knowledge Graphs (TKGs).
- 2. Modeling the changing hierarchy of TKGs with a learnable function to control the varied curvatures.
- 3. A hyperbolic RRN performs autoregressive event prediction.
- 4. Showing consistent improvement on benchmarks, particularly when there are more hierarchical relations.

Motivation

Local Representations Temporal Knowledge Graph

- Hierarchies can be derived chronologically from TKGs (global representation).
- Each KG at one timestamp has a different level of hierarchies (local representation).

Model Components

For a TKG $\{G_t\}_{t \in \mathcal{T}}$, HyperVC implements two representations:

- the global representation $\mathbf{H}_t \in \mathbb{H}_c^d$ with common learnable curvature c.
- the local representations $\mathbf{h}_t \in \mathbb{H}_{c_t}^d$, curvatures c_t are optimized for each G_t (different hierarchical levels).

$$\begin{aligned} \mathbf{H}_{t} &= \mathrm{hRNN}^{(1)} \left(\mathcal{T}^{c} \left(g'(G_{t}) \right), \mathbf{H}_{t-1} \right), \\ \mathbf{h}_{t}(s) &= \mathrm{hRNN}^{(2)} \left(\mathcal{T}^{c_{t}} \left(g(N_{t}^{(s)}) \right), \mathcal{T}_{c}^{c_{t}}(\mathbf{H}_{t}), \mathcal{T}_{c_{t-1}}^{c_{t}}(\mathbf{h}_{t-1}(s)) \right), \\ \mathbf{h}_{t}(s, r) &= \mathrm{hRNN}^{(3)} \left(\mathcal{T}^{c_{t}} \left(g(N_{t}^{(s)}) \right), \mathcal{T}_{c}^{c_{t}}(\mathbf{H}_{t}), \mathcal{T}_{c_{t-1}}^{c_{t}}(\mathbf{h}_{t-1}(s, r)) \right), \end{aligned}$$

where

- hRNN are the hyperbolic Recurrent Neural Networks (HRNNs),
- $N_t^{(s)}$ is the neighborhood of s in G_t ,
- g, g' are the neighborhood aggregator with graph attention layer, and
- $\mathcal{T}_{c_1}^{c_2}$ is the transformation of curvatures between hyperbolic spaces.

University of Southern California¹ and University of California, Los Angeles²

Global Representation

Architecture of HyperVC (Code)

Through the cyan box of the **global** representations, the green and yellow boxes of the **local** representations, and the pink box of time-consistent hyperbolic embeddings of entities and relations, we calculate probability of triplet (s, r, o) at timestamp t. **LSC** refers to the linear softmax classifier.

Results

		YA	GO			WI	IKI			ICEV	NS18			GD	ELT	
Model	MRR	H@1	H@3	H@10	MRR	H@1	H@3	H@10	MRR	H@1	H@3	H@10	MRR	H@1	H@3	H@10
RE-Net	65.16	63.29	65.63	68.08	51.97	48.01	52.07	53.91	42.93	36.19	45.47	55.80	40.42	32.43	43.30	53.70
CyGNet	63.47	64.26	65.71	68.95	45.50	50.48	50.79	52.80	46.69	40.58	<u>49.82</u>	57.14	50.92	<u>44.53</u>	54.69	<u>60.99</u>
SeDyT-CONV	66.88		67.05	68.73	52.90		52.96	54.00	45.91		45.86	49.54	54.86		54.68	58.14
HIP Network	67.55	<u>66.32</u>	68.49	70.37	54.71	53.82	54.73	56.46	48.37	43.51	51.32	58.49	<u>52.76</u>	46.35	55.31	61.87
HyperVC	67.52	66.46	67.52	69.28	53.02	51.98	53.36	54.55	41.38	34.21	44.25	55.17	40.08	32.98	42.84	53.26

Our approach strengthened the performance on the more hierarchical data (i.e., WIKI, YAGO) whereas, with less hierarchical data (i.e., GDELT and ICEWS18), ours did not outperform the earlier models.

Learnable curvatures

The learnable local curvature c_t is trained as a function of two variables: times and Krackhardt hierarchical scores.

• $c_t^1 = c$ (learnable constant)

- $c_t^2 = -\sigma \left(\alpha \sin(\omega t) + (\beta t + \gamma)\right)$ (time only, additive time series)
- $c_t^3 = -\sigma(f(Khs_{G_t}))$ (hierarchical score only)
- $c_t^4 = -\sigma \left(\alpha \sin(\omega t) + (\beta t + \gamma) + f(Khs_{G_t}) \right)$ (combination of two variables)

	YAGO									
Curv.	MRR	H@1	H@3	H@10						
c_t^1	67.49	66.46	67.49	69.12						
c_t^2	67.52	66.46	67.52	69.28						
c_t^3	67.49	65.89	67.11	68.61						
c_t^4	66.79	65.57	67.10	68.54						

I₄T_EX TikZ**poster**